https://www.selleckchem.com/products/gdc-0068.html Pitayas (Hylocereus spp.) is an attractive, highly nutritious and commercially valuable tropical fruit. However, low-temperature damage limits crop production. Genome of pitaya has not been sequenced yet. In this study, we sequenced the transcriptome of pitaya as the reference and further investigated the proteome under low temperature. By RNAseq technique, approximately 25.3 million reads were obtained, and further trimmed and assembled into 81,252 unigene sequences. The unigenes were searched against UniProt, NR and COGs at NCBI, Pfam, InterPro and Kyoto Encyclopedia of Genes and Genomes (KEGG) database, and 57,905 unigenes were retrieved annotations. Among them, 44,337 coding sequences were predicted by Trandecoder (v2.0.1), which served as the reference database for label-free proteomic analysis study of pitaya. Here, we identified 116 Differentially Abundant Proteins (DAPs) associated with the cold stress in pitaya, of which 18 proteins were up-regulated and 98 proteins were down-regulated. KEGG analysis and other results showed that these DAPs mainly related to chloroplasts and mitochondria metabolism. In summary, chloroplasts and mitochondria metabolism-related proteins may play an important role in response to cold stress in pitayas. © 2020 Zhou et al.Histone deacetylases (HDACs) are key epigenetic factors in regulating chromatin structure and gene expression in multiple aspects of plant growth, development, and response to abiotic or biotic stresses. Many studies on systematic analysis and molecular function of HDACs in Arabidopsis and rice have been conducted. However, systematic analysis of HDAC gene family and gene expression in response to abiotic and biotic stresses has not yet been reported. In this study, a systematic analysis of the HDAC gene family in maize was performed and 18 ZmHDACs distributed on nine chromosomes were identified. Phylogenetic analysis of ZmHDACs showed that this gene family cou