07; 95% CI, 0.63-1.82), but sample sizes were not reached to allow definitive conclusions. Compared with placebo or standard care, ivabradine reduced HR (eight RCTs, 464 patients; WMD, -9.5 beats min-1; 95% CI, -13.3 to -5.8). Risk of bradycardia was not different between ivabradine and control (five RCTs, 434 patients; OR=1.2; 95% CI, 0.60-2.38). Risk of bias was overall high or unclear. CONCLUSIONS Ivabradine reduces HR compared with placebo or standard care. The effect on MACE or mortality in acute care remains unclear. Further RCTs powered to detect changes in clinically relevant outcomes are warranted. CLINICAL TRIAL REGISTRATION Prospero CRD42018086109. Transorbital sonography provides reliable information about the estimation of intra-cranial pressure by measuring the optic nerve sheath diameter (ONSD), whereas the optic nerve (ON) diameter (OND) may reveal ON atrophy in patients with multiple sclerosis. Here, an AUTomatic Optic Nerve MeAsurement (AUTONoMA) system for OND and ONSD assessment in ultrasound B-mode images based on deformable models is presented. The automated measurements were compared with manual ones obtained by two operators, with no significant differences. https://www.selleckchem.com/TGF-beta.html AUTONoMA correctly segmented the ON and its sheath in 71 out of 75 images. The mean error compared with the expert operator was 0.06 ± 0.52 mm and 0.06 ± 0.35 mm for the ONSD and OND, respectively. The agreement between operators and AUTONoMA was good and a positive correlation was found between the readers and the algorithm with errors comparable with the inter-operator variability. The AUTONoMA system may allow for standardization of OND and ONSD measurements, reducing manual evaluation variability. The accumulation of glucose degradation products (GDPs) can lead to tissue damage in patients with diabetes and those undergoing long-term peritoneal dialysis (PD). Angiogenesis is occasionally observed in the peritoneal membrane of patients undergoing PD, where it is associated with failure of ultrafiltration. To investigate the mechanism underlying the influence of angiogenesis on fluid absorption, we evaluated the effects of accumulation of the glucose degradation product methylglyoxal (MGO) on angiogenesis in vitro, and analyzed the association with angiogenesis in the peritoneal membrane. To this end, we measured the levels of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF)-BB in cultured endothelial and smooth muscle cells after administration of MGO. The expression of PDGF-BB mRNA and protein decreased significantly after exposure to MGO, while the expression of VEGF mRNA increased (both P  less then  0.01). The expression of PDGF-Rβ mRNA in cultured smooth muscle cells did not change after administration of MGO, although the expression of VEGF mRNA increased (P  less then  0.01). We also evaluated the associations between the number of capillary vessels, peritoneal function, and the degree of MGO deposition using peritoneum samples collected from patients undergoing PD. The number of immature capillary vessels was significantly associated with peritoneal dysfunction and the degree of MGO accumulation (both P  less then  0.01). In conclusion, MGO enhances the production of VEGF and suppresses the production of PDGF-BB, potentially leading to disturbance of angiogenesis in the peritoneal membrane. Accumulation of MGO in the peritoneum may cause immature angiogenesis and peritoneal dysfunction. Lymphatic vessels serve as conduits through which immune cells traffic. Because lymphatic vessels are also involved in lipid transport, their function is vulnerable to abnormal metabolic conditions such as obesity and hyperlipidemia. Exactly how these conditions impact immune cell trafficking, however, is not well understood. Here, we found higher numbers of LYVE-1-positive lymphatic endothelial cells and CD3-positive T cells in the lymph nodes of mice fed high-cholesterol or high-fat diets compared with those of mice fed a normal chow diet. To confirm the effect of fat content on immune cell trafficking, the lymphatic endothelial SVEC4-10 cell line was treated with palmitic acid at a 100 μM concentration. After 24 h, palmitic acid-treated cells exhibited increased expression of podoplanin and vascular growth-associated molecules (VEGFC, VEGFD, VEGFR3, and NRP2) and enhanced tube formation. Microarray analysis showed an increase in pro-inflammatory cytokine and chemokine transcription after palmitic acid treatment. Finally, transwell migration assay confirmed that T cell line moved toward medium previously cultured with palmitic acid-treated SVEC4-10 cells. Together, our results suggest that hyperlipidemia drives lymphatic vessel remodeling and T cell migration toward lymphatic endothelial cells. In chronic kidney disease, elevated levels of circulating uremic toxins are associated with a variety of symptoms and organ dysfunction. Indoxyl sulfate (IS) and p-cresyl sulfate (pCS) are microbiota-derived metabolites and representative uremic toxins. We have previously shown that the oral adsorbent AST-120 profoundly reduced pCS compared to IS in adenine-induced renal failure in mice. However, the mechanisms of the different attenuation effects of AST-120 between IS and pCS are unclear. To clarify the difference of AST-120 on IS and pCS, we investigated the levels of fecal indole and p-cresol, the respective precursors of IS and pCS, and examined the influence on the gut microbiota. Although fecal indole was detected in all groups analyzed, fecal p-cresol was not detected in AST-120 treatment groups. In genus level, a total of 23 organisms were significantly changed by renal failure or AST-120 treatment. Especially, AST-120 reduced the abundance of Erysipelotrichaceae uncultured and Clostridium sensu stricto 1, which have a gene involved in p-cresol production. Our findings suggest that, in addition to the adsorption of the uremic toxin precursors, AST-120 affects the abundance of some gut microbiota in normal and renal failure conditions, thereby explaining the different attenuation effects on IS and pCS. Sugar Nucleotidyl Transferases (SNTs) constitute a large family of enzymes that play important metabolic roles. Earlier, for one such SNT, termed N-acetylglucosamine-1-phosphate uridyltransferase- GlmU, we had established that two magnesium ions - Mg2+A and Mg2+B - catalyze the sugar-nucleotidyl transfer reaction. Despite a common structural framework that SNTs share, we recognized key differences around the active-site based on the analysis of available structures. Based on these differences, we had classified SNTs into two major groups, Group - I & II; and further, variation in 'Mg2+A-stabilizing motifs' led us to sub-classify them into five distinct sub-groups. Since group specific conservation of 'Mg2+A-stabilizing motifs' was based only for 45 available structures, here we validate this via an exhaustive analysis of 1,42,025 protein sequences. Previously, we had hypothesized that a metal-ion-catalyzed mechanism would be operative in all SNTs. Here, we validate it biochemically and establish that Mg2+ is a strict requirement for nucleotidyl transfer reactions in every group or sub-group and that a common metal ion dependent mechanism operates in SNTs.