https://www.selleckchem.com/ https://www.selleckchem.com/ [Preparation and chromatographic attributes regarding 1-vinyl-3-dodecylimidazole bromide silica-bonded fixed phase]. Cellular senescence is a state of permanent cell cycle arrest accompanied by unique secretory actions, which influences tissue formation, tumor suppression and aging in vivo. Recent evidences suggest that metabolic and epigenomic reprogram cooperatively creates phenotypic differences of senescent cells, which may provide new clues to control aging processes.Mitochondria are dynamic organelles that have essential metabolic and regulatory functions. Earlier studies using electron microscopy (EM) revealed an immense diversity in the architecture of cristae - infoldings of the mitochondrial inner membrane (IM) - in different cells, tissues, bioenergetic and metabolic conditions, and during apoptosis. However, cristae were considered to be largely static entities. Recently, advanced super-resolution techniques have revealed that cristae are independent bioenergetic units that are highly dynamic and remodel on a timescale of seconds. These advances, coupled with mechanistic and structural studies on key molecular players, such as the MICOS (mitochondrial contact site and cristae organizing system) complex and the dynamin-like GTPase OPA1, have changed our view on mitochondria in a fundamental way. We summarize these recent findings and discuss their functional implications. The traditional Chinese medicine (TCM) formula Qing-Fei-Pai-Du decoction (QFPDD) was the most widely used prescription in China's campaign to contain COVID-19, which has exhibited positive effects. However, the underlying mode of action is largely unknown. A systems pharmacology strategy was proposed to investigate the mechanisms of QFPDD against COVID-19 from molecule, pathway and network levels. The systems pharmacological approach consisted of text mining, target prediction, data integration, network study, bioinformatics analy