This study identifies causes of rising arsenic (As) concentrations over 17 years in an inter-montane aquifer system located just north of the Trans-Mexican-Volcanic-Belt in the Mesa central physiographic region that is extensively developed by long-screened production wells. Arsenic concentrations increased by more than 10 µg/L in 14% (3/22) of re-sampled wells. Similarly, in a larger scale analysis wherein As concentrations measured in 137 wells in 2016 were compared to interpolated, baseline concentrations from 246 wells in 1999, As concentrations rose more than 10 µg/L in 30% of wells. Between 1999 and 2016, the percentage of all wells sampled in each basin-wide sampling campaign exceeding the World Health Organization's 10 µg/L drinking water limit increased from 38 to 64%. Principal Components Analysis (PCA), step-wise multiple regression, and Random Forest modeling (RF) revealed that high As concentrations are closely associated with high pH and temperature, and high concentrations of fluoride (F), molybdenum (Mo), lithium (Li), sodium (Na) and silica (Si), but low calcium (Ca) and nitrate (NO3) concentrations. Pumping-induced mixing with hot, geothermally impacted groundwater generates alkaline water through hydrolysis of silicate minerals. The rising pH converts oxyanion sorption sites from positive to negative releasing As (and Mo) to pore waters. The negative correlation between nitrate and As concentrations can be explained by conservative mixing of shallow, young groundwater with geothermally influenced groundwater. https://www.selleckchem.com/products/liraglutide.html Therefore water carrying an anthropogenic contaminant dilutes water carrying geogenic contaminants. This process is enabled by long well screens. Over-exploitation of aquifers in geothermal regions for agriculture can drive As concentrations in water from production wells to toxic levels even as the total dissolved solids remain low.Antibiotic resistance has become a global public health concern, rendering common infections untreatable. Given the widespread occurrence, increasing attention is being turned toward environmental pathways that potentially contribute to antibiotic resistance gene (ARG) dissemination outside the clinical realm. Studies during the past decade have clearly proved the increased ARG pollution trend along with gradient of anthropogenic interference, mainly through marker-ARG detection by PCR-based approaches. However, accurate source-tracking has been always confounded by various factors in previous studies, such as autochthonous ARG level, spatiotemporal variability and environmental resistome complexity, as well as inherent method limitation. The rapidly developed metagenomics profiles ARG occurrence within the sample-wide genomic context, opening a new avenue for source tracking of environmental ARG pollution. Coupling with machine-learning classification, it has been demonstrated the potential of metagenomic ARG profiles in unambiguously assigning source contribution. Through identifying indicator ARG and recovering ARG-host genomes, metagenomics-based analysis will further increase the resolution and accuracy of source tracking. In this review, challenges and progresses in source-tracking studies on environmental ARG pollution will be discussed, with specific focus on recent metagenomics-guide approaches. We propose an integrative metagenomics-based framework, in which coordinated efforts on experimental design and metagenomic analysis will assist in realizing the ultimate goal of robust source-tracking in environmental ARG pollution.The current study reports the community succession of different toxin and non-toxin producing cyanobacteria at different stages of cyanobacterial harmful algal blooms (CyanoHABs) and their connectivity with nitrogen and phosphorus cycles in a freshwater lake using an ecogenomics framework. Comprehensive high throughput DNA sequencing, water quality parameter measurements, and functional gene expressions over temporal and spatial scales were employed. Among the cyanobacterial community, the lake was initially dominated by Cyanobium during the months of May, June, and early July, and later primarily by Aphanizomenon and Dolichospermum depicting functional redundancy. Finally, Planktothrix appeared in late August and then the dominance switched to Planktothrix in September. Microcystis aeruginosa and Microcystis panniformis; two species responsible for cyanotoxin production, were also present in August and September, but in significantly smaller relative abundance. MC-LR (0.06-1.32 µg/L) and MC-RR (0.01-0.26 µg/ the nitrogen-fixing nif gene and (p less then 0.001) and the PPX enzyme for the stored polyphosphate utilization (r = 0.77, p less then 0.001). Interestingly, the lake experienced a longer N-fixing period (2-3 months) before non-fixing cyanobacteria (Planktothrix) dominated the entire lake in late summer. The Provo Bay site, which is known to be nutrient-rich historically, had early episodes of filamentous cyanobacteria blooms compared to the rest of the lake.Wastewater treatment plants are major point sources of (micro)pollutant emissions and advanced wastewater treatment technologies can improve their removal capacity. While abundant data on individual advanced treatment technologies is available, there is limited knowledge regarding the removal performance of ozonation combined with multiple post-treatments and stand-alone membrane bioreactors. This is especially true for the removal of in vitro and in vivo toxicity. Therefore, we investigated the removal of 40 micropollutants and toxicity by a pilot-scale ozonation with four post-treatments non-aerated and aerated granular activated carbon and biological filtration. In addition, two stand-alone membrane bioreactors fed with untreated wastewater and one MBR operating with ozonated partial flow recirculation were analysed. Aqueous and extracted samples were analysed in vitro for (anti)estrogenic, (anti)androgenic and mutagenic effects. To assess in vivo effects, the mudsnail Potamopyrgus antipodarum was exposed tant concentrations. However, the formation of toxicity requires a post-treatment. Here, ozonation coupled to granular activated carbon filtration seemed the most promising treatment process.