Controlling the release of phosphorus (P) in sediments is important to prevent eutrophication and harmful algal blooms in water bodies. Here we explored the effect of mobile aerators on the control of P release from sediments in a eutrophic pond. The dissolved oxygen in the water body recovered significantly after six months of aeration, becoming 4.2-5.8 times higher than in the control. The pH and Eh values at the sediment-water interface considerably increased, while the concentration of soluble reactive phosphorus (SRP) in pore water significantly decreased, resulting in the alteration of SRP fluxes from 1.69 mg/m2 d to -53.49 mg/m2 d. Moreover, the inert P in sediments increased by 5.2% of the total P at the end of the study compared with the initial state, and the calcium-bound phosphorus (HCl-P) increased by 96.6%. However, although aeration reduced the concentration of SRP in the water column, the total P concentration was 2.45 times higher than that of the control, and the content of redox-sensitive P (BD-P) in the sediment also increased by 200%. Overall, although mobile aeration can maintain the microenvironment of the sediment interface and increase the inert P content in the sediment to reduce the P flux, it cannot reduce the risk of release of mobile P.In the present work, TiO2-graphite-phase-carbon-nitride (TiO2/g-C3N4) was prepared through a hydrothermal method to obtain a new photocatalytic material. https://www.selleckchem.com/products/740-y-p-pdgfr-740y-p.html This material was characterized by means of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray energy spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Solid-state UV-Vis diffuse reflectance spectrometry (UV-Vis-DRS) and electron paramagnetic resonance (EPR). The synthesized TiO2/g-C3N4 exhibited homogeneous morphology, in which TiO2 nanoparticles were uniformly distributed on the g-C3N4 nanosheets. Regarding its potential use as photocatalytic material in the treatment of mineral processing wastewater, 18% TiO2/g-C3N4 showed superior photodegradation performance than TiO2 and g-C3N4, to give 97.1% degradation rate under 100 min of simulated light irradiation. The experimental results showed that the successful incorporation of TiO2 on g-C3N4 nanosheets enhanced the spectral response range of TiO2/g-C3N4, and the photocatalytic activity was improved. In view of that, it can be considered that this kind of photocatalytic material has a good prospect in the treatment of mineral processing wastewater, which would have clearly environmental relevance.As taste-and-odor outbreaks are common in surface waters worldwide, extensive studies have focused on the identification of microorganisms involved in the production of 2-methylisoborneol (MIB) and geosmin (GSM). However, fewer studies have tried to identify potential degraders in natural environments. Eagle Creek Reservoir, a temperate and eutrophic water body, experienced two major seasonal odorous outbreaks in 2013 with maximal concentrations of 99.1 (MIB) and 77.3 ng L-1 (GSM). Fractionation analyses of the odorous compounds showed that MIB was found more frequently in the dissolved fraction while GSM was mostly cell-bound. This difference likely impacts taste-and-odor (T&O) compound susceptibility to biodegradation by bacteria. Spearman relationships of epilimnetic samples collected between spring and early fall linked dissolved MIB occurrences to higher abundances of Bacteroidetes like Flavobacterium resistens, F. granuli, F. saliperosum (p less then 0.001), F. kamogawaensis (p less then 0.01) capable of MIB degradation. Occurrences of cell-bound GSM were correlated to two α-Proteobacteria Novosphingobium hassiacum (p less then 0.001) and Sphingomonas oligophenolica (p less then 0.01), both identified as potential degraders of GSM. The roles of Pseudomonas and Bacillus were ambiguous, and these genera might have been involved in both compound biodegradations (p less then 0.05).Steadily improving per capita income level, energy consumption, and delivery of financial services in South and Southeast Asian countries has remained a subject of discussion among policymakers. Because these endeavors have not only elevated their growth trajectory but also widened the scope for carbon emissions, especially in the preceding two decades. In order to confirm this argument, therefore, in the present study, we intended to examine their dynamic impacts on carbon emissions. In this pursuit, by using the second-generation unit-root test, cointegration test, and panel regression procedures, we investigated the moderating impact of energy solutions on the association between per capita income and CO2 emissions and financial development and CO2 emissions from 1976 to 2015. The computed results revealed that the energy's interaction with the linear per capita income significantly escalated carbon emissions in the long run. However, the impact of energy's interaction with the squared per capita income on carbon emissions is found insignificant but positive in the long run. On the other hand, the interaction of energy with financial development provided a negative but insignificant coefficient. Based on the outcomes, we can ascertain that, at the lower level of income, energy consumption leads to environmental pollution, whereas at the higher level of income, its harmful effect on carbon emissions becomes weak in the given regions. By taking a cue from the computed results, we proposed a policy framework that might help these regions to navigate the energy-led environmental challenges in the coming years.Long-term environmental management to prevent waterfowl population declines is informed by ecology, movement behavior and habitat use patterns. Extrinsic factors, such as human-induced disturbance, can cause behavioral changes which may influence movement and resource needs, driving variation that affects management efficacy. To better understand the relationship between human-based disturbance and animal movement and habitat use, and their potential effects on management, we GPS tracked 15 dabbling ducks in California over ~4-weeks before, during and after the start of a recreational hunting season in October/November 2018. We recorded locations at 2-min intervals across three separate 24-h tracking phases Phase 1) two weeks before the start of the hunting season (control (undisturbed) movement); Phase 2) the hunting season opening weekend; and Phase 3) a hunting weekend two weeks after opening weekend. We used GLMM models to analyze variation in movement and habitat use under hunting pressure compared with 'normal' observed patterns prior to commencement of hunting.