https://www.selleckchem.com/products/CP-690550.html SC) and 32.9mm reduction in Hausdorff distance (HD) for GTV segmentation, and by 3.4% increases in DSC and 29.4mm reduction in HD for CTV segmentation. Surgical reduction of pelvic fracture is a challenging procedure, and accurate restoration of natural morphology is essential to obtaining positive functional outcome. The procedure often requires extensive preoperative planning, long fluoroscopic exposure time, and trial-and-error to achieve accurate reduction. We report a multi-body registration framework for reduction planning using preoperative CT and intraoperative guidance using routine 2D fluoroscopy that could help address such challenges. The framework starts with semi-automatic segmentation of fractured bone fragments in preoperative CT using continuous max-flow. For reduction planning, a multi-to-one registration is performed to register bone fragments to an adaptive template that adjusts to patient-specific bone shapes and poses. The framework further registers bone fragments to intraoperative fluoroscopy to provide 2D fluoroscopy guidance and/or 3D navigation relative to the reduction plan. The framework was investigated in three studies (1) ithin clinical requirements in both simulation and clinical feasibility studies for a broad range of fracture-dislocation patterns. Using routinely acquired preoperative CT and intraoperative fluoroscopy, the framework could improve the accuracy of pelvic fracture reduction, reduce radiation dose, and could integrate well with common clinical workflow without the need for additional navigation systems. The registration framework demonstrated planning and guidance accuracy within clinical requirements in both simulation and clinical feasibility studies for a broad range of fracture-dislocation patterns. Using routinely acquired preoperative CT and intraoperative fluoroscopy, the framework could improve the accuracy of pelvic fracture reduction, reduce radiation dose,