Business process analysis has been facilitated by the Internationa Telecommunication Union (ITU) telecommunications standards body developed by TMForum as the global telecommunications industry association. This transformation involves development of organizational structure, business activities, technical specifications, information and communication flow, and operational schemes, modeled under the enterprise architecture strategic notation, whose result is a breakthrough enterprise architecture design for future telecommunications companies. The design contributes to strategic management knowledge on how collaboration between the telecommunications industry and other IoT-based industries is determined for real operations. This research presents a transformation scheme that can solve the potential problem of bankruptcy in the telecommunications industry through a case study of a smart city in the IoT-based industry.The drought-prone Ethiopian Somali region has a long history of pastoralism (livestock grazing), which is a major source of livelihoods. However, it suffers from poor rangeland management and a lack of research and information. The objectives of this study were to develop a method for forecasting forage biomass and to quantify production of and spatial variation in forage from satellite imagery. We downloaded Sentinel-2 images and processed spectral information in the blue, red, and near-infrared bands, and calculated the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). Combining ground sampling (on 55 plots) with remote sensing data, we developed a forage forecasting model for the area. Forage (biomass) was significantly correlated with both EVI (R2 = 0.87; P less then 0.001) and NDVI (R2 = 0.81; P less then 0.001). Both gave good predictions of forage biomass in the district. We estimated the annual biomass in each grassland pixel at the peak of the growing season. Models based on each index revealed close estimates NDVI indicated an average of 0.76 t/ha and a total of 38 772 t/year; EVI indicated an average of 0.78 t/ha and a total of 39 792 t/year. The estimated rangeland biomass showed high spatial variability of 0.22-4.89 t/ha.year. For future rangeland management in the area, the proposed approach and models can be used to estimate available forage biomass from satellite imagery in the middle of the grass growing season (2 months after the rains start), before the grass matures and is harvested.Apart from many limitations, the usage of hydrogen in different day-to-day applications have been increasing drastically in recent years. However, numerous techniques available to produce hydrogen, electrolysis of water is one of the simplest and cost-effective hydrogen production techniques. In this method, water is split into hydrogen and oxygen by using external electric current. In this research, a novel hydrogen production system incorporated with Photovoltaic - Thermal (PVT) solar collector is developed. The influence of different parameters like solar collector tilt angle, thermal collector design and type of heat transfer fluid on the performance of PVT system and hydrogen production system are also discussed. Finally, thermal efficiency, electrical efficiency, and hydrogen production rate have been predicted by using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique. Based on this study results, it can be inferred that the solar collector tilt angle plays a significant role to improve the performance of the electrical and thermal performance of PVT solar system and Hydrogen yield rate. On the other side, the spiral-shaped thermal collector with water exhibited better end result than the other hydrogen production systems. The predicted results ANFIS techniques represent an excellent agreement with the experimental results. In consequence, it is suggested that the developed ANFIS model can be adopted for further studies to predict the performance of the hydrogen production system.FMR1 gene (fragile X mental retardation 1) represents a genetic and epigenetic factor in a number of human diseases. Though the role of FMR1 gene in substance use disorders (SUDs) is not well studied, a number of investigations indicate that SUDs and FMR1-accociated disorders may share common underlying mechanisms. We examined the relative FMR1 mRNA levels and their sex-distribution in leukocytes from patients with alcohol and drug dependence compared to healthy controls. The study included 44 participants, 16 with alcohol dependence (mean age 43, 10 males and 6 females), 17 with drug dependence (mean age 41, 12 males and 5 females) and 11 healthy controls (mean age 47, 5 males and 6 females). Participants donated 5-6 ml of blood and completed a specialized questionnaire. Total RNA was isolated and cDNA was synthesized and used as a template for qRT-PCR analysis. The studied persons with alcohol and drug dependence share common socio-demographic and substance-use related characteristics. Significant FMR1 down-regulation was observed in the alcohol dependent group (25 % decrease; p = 0.005). Sex-associated analysis revealed that FMR1 down-regulation was primarily in alcohol-dependent men (40% decrease; p = 0.001) and did not reach significance in women. A similar sex-dependent pattern was observed among drug-dependent individuals. Drug-dependent men had significantly lower FMR1 mRNA levels (24% decrease; p = 0.015) compared with controls, while no significant difference was observed in drug-dependent females. These data indicate FMR1 mRNA down-regulation in persons with alcohol- and drug-dependence, relative to controls, is sex-dependent. This implies a role for FMR1 in substance use disorders. These findings require confirmation by including protein measures and the recruitment of larger cohorts.The study aimed to analyze the seasonal qualitative evolution of the Quaternary groundwater in the Abouabou area in order to see the capacity of this water to be used as a water supply by the populations. In-situ measurements (temperature, electrical conductivity, dissolved oxygen, turbidity and pH) and chemical parameter analyses (NH4+, Ca2+, Mg2+, K+, Na+, NO3-, NO2-, PO43-, SO42-, Cl- and HCO3-) were performed on the 24 samples collected during the four (4) seasons of the year. https://www.selleckchem.com/products/az-33.html The use of Kruskal-Wallis and ANOVA tests has allowed the monitoring of seasonal variations in hydro-chemical parameters in well and borehole water. Also, the Piper diagram permit to identify the main hydrochemical facies according to the seasons. Finally, the Kohonen Self Organizing Maps (SOM) method was applied to physico-chemical parameters in order to highlight the spatial distribution of groundwater quality in the Abouabou area. The results show that, based on the physico-chemical parameters analysed, the groundwater is of good quality due to meeting WHO standards for drinking water consumption during all seasons of the year.