https://www.selleckchem.com/products/gi254023x.html In global georeferenced germplasm, allelic variation at the major inflorescence QTL is geographically patterned but only weakly associated with the gradient of annual precipitation. Comparison of NAM with diversity panel association suggests that naive association models may capture some true associations not identified by mixed linear models. Overall, the findings suggest that global inflorescence diversity in sorghum is largely controlled by oligogenic, epistatic, and pleiotropic variation in ancestral regulatory networks. The findings also provide a basis for genomics-enabled breeding of locally-adapted inflorescence morphology. Copyright © The Author(s) 2020. Published by the Genetics Society of America.Leptopilina boulardi (Hymenoptera Figitidae) is a specialist parasitoid of Drosophila The Drosophila-Leptopilina system has emerged as a suitable model for understanding several aspects of host-parasitoid biology. However, a good quality genome of the wasp counterpart was lacking. Here, we report a whole-genome assembly of L. boulardi to bring it in the scope of the applied and fundamental research on Drosophila parasitoids with access to epigenomics and genome editing tools. The 375Mb draft genome has an N50 of 275Kb with 6315 scaffolds >500bp and encompasses >95% complete BUSCOs. Using a combination of ab-initio and RNA-Seq based methods, 25259 protein-coding genes were predicted and 90% (22729) of them could be annotated with at least one function. We demonstrate the quality of the assembled genome by recapitulating the phylogenetic relationship of L. boulardi with other Hymenopterans. The key developmental regulators like Hox genes and sex determination genes are well conserved in L. boulardi, and so is the basic toolkit for epigenetic regulation. The search for epigenetic regulators has also revealed that L. boulardi genome possesses DNMT1 (maintenance DNA methyltransferase), DNMT2 (tRNA methyltransferase)