https://www.selleckchem.com/pharmacological_epigenetics.html Ribonucleoside monophosphates (rNMPs) represent the most common non-standard nucleotides found in the genome of cells. The distribution of rNMPs in DNA has been studied only in limited genomes. Using the ribose-seq protocol and the Ribose-Map bioinformatics toolkit, we reveal the distribution of rNMPs incorporated into the whole genome of a photosynthetic unicellular green alga, Chlamydomonas reinhardtii. We discovered a disproportionate incorporation of adenosine in the mitochondrial and chloroplast DNA, in contrast to the nuclear DNA, relative to the corresponding nucleotide content of these C. reinhardtii organelle genomes. Our results demonstrate that the rNMP content in the DNA of the algal organelles reflects an elevated ATP level present in the algal cells. We reveal specific biases and patterns in rNMP distributions in the algal mitochondrial, chloroplast, and nuclear DNA. Moreover, we identified the C. reinhardtii orthologous genes for all three subunits of the RNase H2 enzyme using GeneMark-EP + gene finder.New World species of the intracellular protozoan parasites of the Leishmania genus can cause mucocutaneous leishmaniases. The presence of an endosymbiotic Leishmania RNA virus (LRV) in Leishmania guyanensis (L.g.) promotes disease exacerbation and the development of mucocutaneous disease. It was previously reported that LRV blocks the NLRP3 inflammasome, but additional mechanisms remain unclear. Here, we investigated whether LRV interferes with the inflammasome via caspase-11, which induces non-canonical NLRP3 activation and was reported to be activated by Leishmania. By using macrophages and mice, we found that LRV inhibits caspase-11 activation and IL-1β release by L.g. in a TLR3- and ATG5-dependent manner. Moreover, LRV exacerbates disease in C57BL/6 mice but not in Casp11 -/- , Nlrp3 -/- , and 129 mice, a mouse strain that is naturally mutant for caspase-11. These results demonstrate that