https://www.selleckchem.com/products/bal-0028.html This mechanism can be mimicked with exogenous pharmacological approaches (e.g. intrathecal administration of Y1 agonists) to inhibit mechanical and thermal hypersensitivity and spinal neuron activity in rodent models of neuropathic, inflammatory, and postoperative pain. Pharmacological activation of Y1 also inhibits mechanical- and histamine-induced itch. These immunohistochemical, pharmacological, and cell type-directed lesioning data, in combination with recent transcriptomic findings, point to Y1-INs as a promising therapeutic target for the development of spinally directed NPY-Y1 agonists to treat both chronic pain and itch.Decision makers often reject mixed gambles offering equal probabilities of a larger gain and a smaller loss. This important phenomenon, referred to as loss aversion, is typically explained by prospect theory, which proposes that decision makers give losses higher utility weights than gains. In this paper we consider alternative psychological mechanisms capable of explaining loss aversion, such as a fixed utility bias favoring rejection, as well as a bias favoring rejection prior to gamble valuation. We use a drift diffusion model of decision making to conceptually distinguish, formally define, and empirically measure these mechanisms. In two preregistered experiments, we show that the pre-valuation bias provides a very large contribution to model fits, predicts key response time patterns, reflects prior expectations regarding gamble desirability, and can be manipulated independently of the valuation process. Our results indicate that loss aversion is the result of multiple different psychological mechanisms, and that the pre-valuation bias is a fundamental determinant of this well-known behavioral tendency. These results have important implications for how we model behavior in risky choice tasks, and how we interpret its relationship with various psychological, clinical, and neurobiological v