https://www.selleckchem.com/products/citarinostat-acy-241.html Ion mobility-mass spectrometry (IM-MS) has become a powerful tool for glycan structural characterization due to its ability to separate isomers and provide collision cross section (CCS) values that facilitate structural assignment. However, IM-based isomer analysis may be complicated by the presence of multiple gas-phase conformations of a single structure that not only increases difficulty in isomer separation but can also introduce the possibility for misinterpretation of conformers as isomers. Here, the ion mobility behavior of several sets of isomeric glycans, analyzed as their permethylated derivatives, in both nonreduced and reduced forms, was investigated by gated-trapped ion mobility spectrometry (G-TIMS). Notably, reducing-end reduction, commonly performed to remove anomerism-induced chromatographic peak splitting, did not eliminate the conformational heterogeneity of permethylated glycans in the gas phase. At a mobility resolving power of ∼100, 14 out of 22 structures showed more than one conformatiignment of each isomeric structure.Bleomycin has a long-studied mechanism of action through the formation of a complex with metals, such as iron. The bleomycin-iron complex was recently shown to induce membrane damage by free radical reactivity. Because the use of Fe nanoparticles is spreading for drug delivery strategies, molecular mechanisms of cell damage must include different compartments in order to observe the progression of the cell reactivity. In this study, human embryonic kidney (HEK-293) cells were exposed for 24 h to bleomycin and polymeric iron oxide nanoparticles (Fe-NPs), alone or in combination. The fatty acid-based membrane lipidomic analysis evidenced the fatty acid remodeling in response to the treatments. Bleomycin alone caused the increase of saturated fatty acid (SFA) moieties in cell membrane glycerophospholipids with concomitant diminution of monounsaturated (MUFA) and polyun