https://www.selleckchem.com/ Superhalogens are nanoclusters with high electron affinities, exhibiting behavior similar to that of halogens. Their dimerization yields nonpolar symmetrical clusters, akin to diatomic halogen molecules, and they are unstable in the condensed phase in the absence of charge-compensating cations. Herein, we provide ab initio evidence that SbCl4 superhalogen is an exception its dimerization yields a polar cluster that can be viewed as a quasi-bonded [SbCl5]δ- and [SbCl3]δ+ Lewis acid-base cluster. The symmetry breaking arises from the valence stratification of Sb into Sb5+ and Sb3+ as well as their lone pair electrons. When assembled, SbCl4 clusters form a supercrystal that is thermodynamically stable up to 600 K, with the unique bonding feature of Sb2Cl8 prevailing in the bulk phase. Combination of mixed valence and lone pair electrons leads to electric polarizations along all directions, generating a type of unconventional multimode ferroelectricity in which three different modes of ferroelectricity with distinct magnitudes and Curie temperature are revealed.MnBi2Te4 (MBT) is the first intrinsic magnetic topological insulator with the interaction of spin-momentum locked surface electrons and intrinsic magnetism, and it exhibits novel magnetic and topological phenomena. Recent studies suggested that the interaction of electrons and magnetism can be affected by the Mn-doped Bi2Te3 phase at the surface due to inevitable structural defects. Here, we report an observation of nonreciprocal transport, that is, current-direction-dependent resistance, in a bilayer composed of antiferromagnetic MBT and nonmagnetic Pt. The emergence of the nonreciprocal response below the Néel temperature confirms a correlation between nonreciprocity and intrinsic magnetism in the surface state of MBT. The angular dependence of the nonreciprocal transport indicates that nonreciprocal response originates from the asymmetry scattering of electrons at the surface of MB