https://www.selleckchem.com/products/azd6738.html We developed a fully automated, two-step deep learning approach for characterizing coronary calcified plaque in intravascular optical coherence tomography (IVOCT) images. First, major calcification lesions were detected from an entire pullback using a 3D convolutional neural network (CNN). Second, a SegNet deep learning model with the Tversky loss function was used to segment calcified plaques in the major calcification lesions. The fully connected conditional random field and the frame interpolation of the missing calcification frames were used to reduce classification errors. We trained/tested the networks on a large dataset comprising 8,231 clinical images from 68 patients with 68 vessels and 4,320 ex vivo cadaveric images from 4 hearts with 4 vessels. The 3D CNN model detected major calcifications with high sensitivity (97.7%), specificity (87.7%), and F1 score (0.922). Compared to the standard one-step approach, our two-step deep learning approach significantly improved sensitivity (from 77.5% to 86.2%), precision (from 73.5% to 75.8%), and F1 score (from 0.749 to 0.781). We investigated segmentation performance for varying numbers of training samples; at least 3,900 images were required to obtain stable segmentation results. We also found very small differences in calcification attributes (e.g., angle, thickness, and depth) and identical calcium scores on repetitive pullbacks, indicating excellent reproducibility. Applied to new clinical pullbacks, our method has implications for real-time treatment planning and imaging research.Cranial epidural hematoma is a serious event requiring immediate intervention. This can be due to sudden traction tearing the vessels between the dura and the skull. During posterior fossa surgery, brain collapse may emerge due to the sudden reduction of prolonged elevated intracranial pressure; it could cause dura-skull detachment to create epidural hematoma even far from the surgical