https://www.selleckchem.com/products/cx-5461.html A graphene-embedded plasmonic rib waveguide (GEPRW) is designed for the mid-infrared electro-optic modulator. The mode characteristics and electro-optic (EO) modulation performances are simulated and optimized by using the finite element method. The results show that propagation length of 103mm and figure of merit of 106 are obtained by adjusting the bias voltage applied to the GEPRW. The EO wavelength tunings are -66.69 and -78.87nm/V for peak L and peak R in the loss spectra when w=3µm and h1=2µm. For a 100 µm long GEPRW, the modulation depths of ∼96.4,∼97.1,∼93.7, and ∼94.9%, and FWHMs of ∼30,∼74,∼34, and ∼59nm can be achieved when λ=1.55, 1.87. 1.89, and 2.23 µm. The EO modulator based on the GEPRW has a wide wavelength tuning range from 1.05 to 2.23 µm. It has high modulation depth, low insertion loss, and broad bandwidth, which can be used as EO tunable devices such as optical interconnects and optical switches.The Doppler effect of motional polarization grating is studied for the first time to the best of our knowledge. Based on the optical properties of polarization grating, the Doppler effect principle of polarization grating is elucidated theoretically. A method to obtain the Doppler frequency shift based on beat frequency signal that is produced by superposition of order ±1 diffraction beams of polarization grating is proposed, and a proof-of-concept experiment is conducted to measure the frequency signal of the motional polarization grating. The movement characteristics of polarization grating varying with time can be obtained after a short-time Fourier transformation of the light signal. The experimental results are in good agreement with the theoretical predication, which verifies the correctness of the theoretical analysis and achieves the measurement of linear motion velocity and acceleration of motional polarization grating with high accuracy. This study proposes a new idea for laser frequency shift