We also show that the detrended moving average method outperforms the Cholesky method. Based on the previous findings, we introduce a novel procedure of discriminating between Gaussian SSSI, SSII, and stationary processes. Finally, we illustrate the proposed procedure by applying it to real-world data, namely, the daily EURUSD currency exchange rates, and show that the data can be modeled by the OU process.We study the synchronized state in a population of network-coupled, heterogeneous oscillators. https://www.selleckchem.com/products/fl118.html In particular, we show that the steady-state solution of the linearized dynamics may be written as a geometric series whose subsequent terms represent different spatial scales of the network. Specifically, each additional term incorporates contributions from wider network neighborhoods. We prove that this geometric expansion converges for arbitrary frequency distributions and for both undirected and directed networks provided that the adjacency matrix is primitive. We also show that the error in the truncated series grows geometrically with the second largest eigenvalue of the normalized adjacency matrix, analogously to the rate of convergence to the stationary distribution of a random walk. Last, we derive a local approximation for the synchronized state by truncating the spatial series, at the first neighborhood term, to illustrate the practical advantages of our approach.We develop a data-driven method, based on semi-supervised classification, to predict the asymptotic state of multistable systems when only sparse spatial measurements of the system are feasible. Our method predicts the asymptotic behavior of an observed state by quantifying its proximity to the states in a precomputed library of data. To quantify this proximity, we introduce a sparsity-promoting metric-learning (SPML) optimization, which learns a metric directly from the precomputed data. The optimization problem is designed so that the resulting optimal metric satisfies two important properties (i) it is compatible with the precomputed library and (ii) it is computable from sparse measurements. We prove that the proposed SPML optimization is convex, its minimizer is non-degenerate, and it is equivariant with respect to the scaling of the constraints. We demonstrate the application of this method on two multistable systems a reaction-diffusion equation, arising in pattern formation, which has four asymptotically stable steady states, and a FitzHugh-Nagumo model with two asymptotically stable steady states. Classifications of the multistable reaction-diffusion equation based on SPML predict the asymptotic behavior of initial conditions based on two-point measurements with 95% accuracy when a moderate number of labeled data are used. For the FitzHugh-Nagumo, SPML predicts the asymptotic behavior of initial conditions from one-point measurements with 90% accuracy. The learned optimal metric also determines where the measurements need to be made to ensure accurate predictions.The minimum heat cost of computation is subject to bounds arising from Landauer's principle. Here, I derive bounds on finite modeling-the production or anticipation of patterns (time-series data)-by devices that model the pattern in a piecewise manner and are equipped with a finite amount of memory. When producing a pattern, I show that the minimum dissipation is proportional to the information in the model's memory about the pattern's history that never manifests in the device's future behavior and must be expunged from memory. I provide a general construction of a model that allows this dissipation to be reduced to zero. By also considering devices that consume or effect arbitrary changes on a pattern, I discuss how these finite models can form an information reservoir framework consistent with the second law of thermodynamics.The stochastic discrete Langevin-type equation, which can describe p-order persistent processes, was introduced. The procedure of reconstruction of the equation from time series was proposed and tested on synthetic data. The approach was applied to hydrological data leading to the stochastic model of the phenomenon. The work is a substantial extension of our paper [Chaos 26, 053109 (2016)], in which the persistence of order 1 was taken into account.A problem of the analysis of stochastic effects in multirhythmic nonlinear systems is investigated on the basis of the conceptual neuron map-based model proposed by Rulkov. A parameter zone with diverse scenarios of the coexistence of oscillatory regimes, both spiking and bursting, was revealed and studied. Noise-induced transitions between basins of periodic attractors are analyzed parametrically by statistics extracted from numerical simulations and by a theoretical approach using the stochastic sensitivity technique. Chaos-order transformations of dynamics caused by random forcing are discussed.10.1063/5.0056530.4In this paper, we experimentally verify the phenomenon of chaotic synchronization in coupled forced oscillators. The study is focused on the model of three double pendula locally connected via springs. Each of the individual oscillators can behave both periodically and chaotically, which depends on the parameters of the external excitation (the shaker). We investigate the relation between the strength of coupling between the upper pendulum bobs and the precision of their synchronization, showing that the system can achieve practical synchronization, within which the nodes preserve their chaotic character. We determine the influence of the pendula parameters and the strength of coupling on the synchronization precision, measuring the differences between the nodes' motion. The results obtained experimentally are confirmed by numerical simulations. We indicate a possible mechanism causing the desynchronization of the system's smaller elements (lower pendula bobs), which involves their motion around the unstable stationary position and possible transient dynamics. The results presented in this paper may be generalized into typical models of pendula and pendula-like coupled systems, exhibiting chaotic dynamics.The study of deterministic chaos continues to be one of the important problems in the field of nonlinear dynamics. Interest in the study of chaos exists both in low-dimensional dynamical systems and in large ensembles of coupled oscillators. In this paper, we study the emergence of chaos in chains of locally coupled identical pendulums with constant torque. The study of the scenarios of the emergence (disappearance) and properties of chaos is done as a result of changes in (i) the individual properties of elements due to the influence of dissipation in this problem and (ii) the properties of the entire ensemble under consideration, determined by the number of interacting elements and the strength of the connection between them. It is shown that an increase of dissipation in an ensemble with a fixed coupling force and a number of elements can lead to the appearance of chaos as a result of a cascade of period-doubling bifurcations of periodic rotational motions or as a result of invariant tori destruction bifurcations.