Finally, the potential human health risk estimated using the hazard quotient approach, based on the acceptable daily intake and the estimated daily intake, showed a negligible risk for human health from vegetable consumption. However, canonical-correspondence analysis showed that detected ABs explained 54 % of the total variation in AB resistance genes abundance in the vegetable samples. Thus, further studies are needed to assess the risks of antibiotic resistance promotion in vegetables and the significance of the occurrence of their metabolites.The effects of dibutyl phthalate (DBP) on the toxicity and edible quality (e.g., soluble proteins, soluble sugars, and vitamin C) of green and purple lettuce in the presence of polyethylene (PE) fragments were evaluated. The results revealed that PE treatment for 28 days decreased DBP and monobutyl phthalate content in lettuce roots and leaves, but enhanced the inhibitory effects of DBP on root growth and activity, reduced soluble protein and sugar content in lettuce leaves, and increased vitamin C content in lettuce leaves. Scanning and transmission electron microscopies revealed that PE only adhered to the root surface and did not enter the lettuce roots. Moreover, separation of the cell wall was aggravated in lettuce roots treated with DBP+PE, but not in lettuce treated with individual DBP or PE, and even led to the expansion of endoplasmic reticulum vesicles and cell rupture. Gaussian analysis indicated that PE interacted with DBP molecules through van der Waals interactions, which decreased DBP transport from the culture solution into the lettuce roots. In addition, purple lettuce was more sensitive to exogenous pollutants than green lettuce. This study provides new insights for food safety related to DBP fate and toxicity under PE stress.There is a growing demand to protect food products against the hazard of microbes and their toxins. To satisfy such goals, it is important to develop highly sensitive, reliable, sophisticated, rapid, and cost-effective sensing techniques such as electrochemical sensors/biosensors. Although diverse forms of nanomaterials (NMs)-based electrochemical sensing methods have been introduced in markets, the reliability of commercial products is yet insufficient to meet the practical goal. In this review, we focused on 1) sources of pathogenic microbes and their toxins; 2) possible routes of their entrainment in food, and 3) current development of NM-based biosensors to realize real-time detection of the target analytes. At last, future prospects and challenges in this research field are discussed.Dioxin compounds are persistent carcinogenic byproducts of anthropogenic activities such as waste combustion and other industrial activities. The ubiquitous distribution of dioxins is global concerns these days. Among of recent techniques, bioremediation, an eco-friendly and cost-effective technology, uses bacteria or fungi to detoxify in dioxins; however, not many bacteria can degrade the most toxic dioxin congener 2,3,7,8-tetrachlorinated dibenzo-p-dioxin (TCDD). In this study, the endophytic bacterium Burkholderia cenocapacia 869T2 was capable of TCDD degradation by nearly 95 % after one-week of an aerobic incubation. Through transcriptomic analysis of the strain 869T2 at 6 -h and 12 -h TCDD exposure, a number of catabolic genes involved in dioxin metabolism were detected with high gene expressions in the presence of TCDD. The transcriptome data also indicated that B. cenocepacia strain 869T2 metabolized the dioxin compounds from an early phase (at 6 h) of the incubation, and the initial outline for a general dioxin degradation pathway were proposed. One of the catabolic genes, l-2-haloacid dehalogenase (2-HAD) was cloned to investigate its contribution in dioxin dehalogenation. By detecting the increasing concentration of chloride ions released from TCDD, our results indicated that the dehalogenase played a crucial role in dehalogenation of dioxin in the aerobic condition.Tracking the in vivo transportation and localization of microplastics is the prerequisite for a better understanding of the toxicity but has not been reported yet. Fluorescent microbeads are widely used for tracking in the laboratory, whereas the most abundant microplastic (e.g., fiber) found in the field is rarely adapted. In this study, we used fiber slicer and blades to cut spinning materials into fluorescent micro-sized fibers with various lengths. Fiber slicer and blades are efficient tools to produce specific lengths of fibers. The microfibers showed a specific color under the ultraviolet irradiation; therefore, these microfibers can be clearly visualized when they are within aquatic organisms, such as water flea, shrimp, medaka, and zebrafish, which enables us to observe the whole biological processes of microfibers directly. https://www.selleckchem.com/products/Clopidogrel-bisulfate.html Thus, the present study provides a novel method of microfibers preparation, and this kind of fluorescent fiber is applicable to be an efficient and convenient tracer for in vivo process observation and potential toxicological analysis in the future.Waste foundry sand (WFS) is a solid waste generated from the metal casting industries around the world, problem of its disposal and utilization are burgeoning universally. WFS is termed as a hazardous material due to the presence of organic and inorganic materials that are capable of contaminating the environment and can cause serious health issues. The study aims to re-utilize WFS in large volumes in concrete as a fine aggregate. The major impediment in the production of self-compacting concrete (SCC) is the robustness of concrete mixture. To study the effect of WFS on the robustness of SCC, six different mixtures were prepared having WFS up to 50 % at regular intervals of 10 % employing metakaolin as a substitute for cement at a constant ratio. It was revealed that the incorporation of WFS improved the robustness behavior of SCC, despite the change of ±10 L/m3 water dosage in SCC mixtures, all the mixes were observed falling in the same classes. Incorporation of 40 % WFS increased compressive strength by 17.2 % relative to control concrete at 56 days curing ages. The findings of the study suggest that WFS can be used in large volumes for the development of SCC without compromising its properties.