https://www.selleckchem.com/products/azeliragon.html Secretory granules (SGs) are specialized organelles responsible for the storage and regulated release of various biologically active molecules from the endocrine and exocrine systems. Thus, proper SG biogenesis is critical to normal animal physiology. Biogenesis of SGs starts at the trans-Golgi network (TGN), where immature SGs (iSGs) bud off and undergo maturation before fusing with the plasma membrane (PM). How iSGs mature is unclear, but emerging studies have suggested an important role for the endocytic pathway. The requirement for endocytic machinery in SG maturation blurs the line between SGs and another class of secretory organelles called lysosome-related organelles (LROs). Therefore, it is important to re-evaluate the differences and similarities between SGs and LROs. Curcumae Rhizoma (CR) has a clinical efficacy in activating blood circulation to dissipate blood stasis and has been used for the clinical treatment of qi stagnation and blood stasis (QSBS) primary dysmenorrhea for many years. However, its molecular mechanism is unknown. The present study aimed to demonstrate the multicomponent, multitarget and multipathway regulatory molecular mechanisms of CR in the treatment of QSBS primary dysmenorrhea. Observations of pathological changes in uterine tissues and biochemical assays were used to confirmthata rat model wassuccessfullyestablished and that CR was effective in the treatment of QSBS primary dysmenorrhea. The main active components of CR in rat plasma were identified and screened by ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry (UPLC-Q/TOF-MS). The component-target-disease network and protein-protein interaction (PPI) network of CR were constructed by a network pharmacology approach. Then, we performed Gene Ontology (GOtelet aggregation. This study demonstrated the bioactive constituents and mechanisms of CR in promoting blood circulation and removing blood