We demonstrate gate control of electronic heat flow in a thermally biased single-quantum-dot junction. Electron temperature maps taken in the immediate vicinity of the junction, as a function of the gate and bias voltages applied to the device, reveal clearly defined Coulomb diamond patterns that indicate a maximum heat transfer at the charge degeneracy point. The nontrivial bias and gate dependence of this heat valve results from the quantum nature of the dot at the heart of device and its strong coupling to leads.The correlation length ξ, a key quantity in glassy dynamics, can now be precisely measured for spin glasses both in experiments and in simulations. However, known analysis methods lead to discrepancies either for large external fields or close to the glass temperature. We solve this problem by introducing a scaling law that takes into account both the magnetic field and the time-dependent spin-glass correlation length. The scaling law is successfully tested against experimental measurements in a CuMn single crystal and against large-scale simulations on the Janus II dedicated computer.Optical activity from chiral metamaterials is both fundamental in electrodynamics and useful for polarization control applications. It is normally expected that due to infinitesimally small thickness, two-dimensional (2D) planar metamaterials cannot introduce large optical rotations. Here, we present a new mechanism to achieve strong optical rotation up to 90° by evoking phase transition in the 2D metamaterials through tuning coupling strength between meta-atoms. We analytically elucidate such phenomenon by developing a model of phase-transition coupled-oscillator array. And we further corroborate our ideas with both numerical simulations and experiments. Our findings would pave a new way for applying the concept of phase transition in photonics for designing novel optical devices for strong polarization controls and other novel applications.Although a plethora of techniques are now available for controlling the group velocity of an optical wave packet, there are very few options for creating accelerating or decelerating wave packets whose group velocity varies controllably along the propagation axis. Here we show that "space-time" wave packets in which each wavelength is associated with a prescribed spatial bandwidth enable the realization of optical acceleration and deceleration in free space. Endowing the field with precise spatiotemporal structure leads to group-velocity changes as high as ∼c observed over a distance of ∼20  mm in free space, which represents a boost of at least ∼4 orders of magnitude over X waves and Airy pulses. The acceleration implemented is, in principle, independent of the initial group velocity, and we have verified this effect in both the subluminal and superluminal regimes.Active materials, composed of internally driven particles, have properties that are qualitatively distinct from matter at thermal equilibrium. However, the most spectacular departures from equilibrium phase behavior are thought to be confined to systems with polar or nematic asymmetry. In this Letter, we show that such departures are also displayed by more symmetric phases such as hexatics if, in addition, the constituent particles have chiral asymmetry. We show that chiral active hexatics whose rotation rate does not depend on density have giant number fluctuations. If the rotation rate depends on density, the giant number fluctuations are suppressed due to a novel orientation-density sound mode with a linear dispersion which propagates even in the overdamped limit. However, we demonstrate that beyond a finite but large length scale, a chirality and activity-induced relevant nonlinearity invalidates the predictions of the linear theory and destroys the hexatic order. In addition, we show that activity modifies the interactions between defects in the active chiral hexatic phase, making them nonmutual. Finally, to demonstrate the generality of a chiral active hexatic phase we show that it results from the melting of chiral active crystals in finite systems.The dynamics of self-propelled particles with curved trajectories is investigated. Two modes are observed, a bulk mode with a quasicircular motion and a surface mode with the particles following the walls. The surface mode is the only mode of ballistic transport and the particle current is polar and depends on the particles' chirality. We show that a robust sorting and extraction occurs when the particles explore a domain with two exit gates collecting selectively the particles circling left and right. With a counterslope, the extraction rate is found to increase while the sorting error is reduced.We use scanning tunneling microscopy to investigate Bi_2Sr_2Ca_2Cu_3O_10+δ trilayer cuprates from the optimally doped to overdoped regime. We find that the two distinct superconducting gaps from the inner and outer CuO_2 planes both decrease rapidly with doping, in sharp contrast to the nearly constant T_C. Spectroscopic imaging reveals the absence of quasiparticle interference in the antinodal region of overdoped samples, showing an opposite trend to that in single- and double-layer compounds. We propose that the existence of two types of inequivalent CuO_2 planes and the intricate interaction between them are responsible for these anomalies in trilayer cuprates.We show that when the time reversal symmetry is broken in a multicomponent superconducting condensate without inversion symmetry the resulting Bogoliubov quasiparticles generically exhibit mini-Bogoliubov-Fermi (BF) surfaces, for small superconducting order parameter. The absence of inversion symmetry makes the BF surfaces stable with respect to weak perturbations. https://www.selleckchem.com/products/ca-170.html With sufficient increase of the order parameter, however, the Bogoliubov-Fermi surface may disappear through a Lifshitz transition, and the spectrum this way become fully gapped. Our demonstration is based on the computation of the effective Hamiltonian for the bands near the normal Fermi surface by the integration over high-energy states. Exceptions to the rule, and experimental consequences are briefly discussed.