https://www.selleckchem.com/ALK.html Through "temporary shut-off-breakthrough-temporary shut-off," the polymer microspheres were able to change the fluid flow rate and streamlines, mobilize residual oils, and enhance the oil recovery rates.This study aimed to investigate ultrastructural changes of growing porcine oocytes and in vitro maturated oocytes. Light microscopy was used to characterize and localize the primordial, primary, secondary, and tertiary follicles. During oocyte growth and maturation, the morphology of mitochondria was roundish or ovoid in shape depending on the differentiation state, whereas their mean diameters oscillated between 0.5 and 0.7 µm, respectively, from primary and secondary follicles. Hooded mitochondria were found in the growing oocytes of the tertiary follicles. In addition to the pleomorphism of mitochondria, changes in the appearance of lipid droplets were also observed, along with the alignment of a single layer of cortical granules beneath the oolemma. In conclusion, our study is apparently the first report to portray morphological alterations of mitochondria that possess the hooded structure during the growth phase of porcine oocytes. The spatiotemporal and intrinsic changes during oogenesis/folliculogenesis are phenomena at the ultrastructural or subcellular level of porcine oocytes, highlighting an in-depth understanding of oocyte biology and impetus for future studies on practical mitochondrion replacement therapies for oocytes.In recent years, drug delivery systems have become some of the main topics within the biomedical field. In this scenario, polymeric microparticles (MPs) are often used as carriers to improve drug stability and drug pharmacokinetics in agreement with this kind of treatment. To avoid a mere and time-consuming empirical approach for the optimization of the pharmacokinetics of an MP-based formulation, here, we propose a simple predictive in silico-supported approach. As an example, in this study, we report