https://www.selleckchem.com/products/phycocyanobilin.html The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a multiprotein complex involved in the release of mature interleukin-1β and triggering of pyroptosis, which is of paramount importance in a variety of physiological and pathological conditions. Over the past decade, considerable advances have been made in elucidating the molecular mechanisms underlying the priming/licensing (Signal 1) and assembly (Signal 2) involved in NLRP3 inflammasome activation. Recently, a number of studies have indicated that the priming/licensing step is regulated by complicated mechanisms at both the transcriptional and posttranslational levels. In this review, we discuss the current understanding of the mechanistic details of NLRP3 inflammasome activation with a particular emphasis on protein-protein interactions, posttranslational modifications, and spatiotemporal regulation of the NLRP3 inflammasome machinery. We also present a detailed summary of multiple positive and/or negative regulatory pathways providing upstream signals that culminate in NLRP3 inflammasome complex assembly. A better understanding of the molecular mechanisms underlying NLRP3 inflammasome activation will provide opportunities for the development of methods for the prevention and treatment of NLRP3 inflammasome-related diseases.Historically, rheumatic diseases have not received much attention in Africa, particularly in sub-Saharan Africa, possibly owing to a focus on the overwhelming incidence of infectious diseases and the decreased life span of the general population in this region. Global attention and support, together with better health policies and planning, have improved outcomes for many infectious diseases; thus, increasing attention is being turned to chronic non-communicable diseases. Rheumatic diseases were previously considered to be rare among Africans but there is now a growing interest in these conditions, particularl