ays as targets for biomarker and therapeutic development.We present a resource-efficient approach to fabricate and operate a micro-nanofluidic device that uses cross-flow filtration to isolate and capture liposarcoma derived extracellular vesicles (EVs). The isolated extracellular vesicles were captured using EV-specific protein markers to obtain vesicle enriched media, which was then eluted for further analysis. Therefore, the micro-nanofluidic device integrates the unit operations of size-based separation with CD63 antibody immunoaffinity-based capture of extracellular vesicles in the same device to evaluate EV-cargo content for liposarcoma. The eluted media collected showed ∼76% extracellular vesicle recovery from the liposarcoma cell conditioned media and ∼32% extracellular vesicle recovery from dedifferentiated liposarcoma patient serum when compared against state-of-art extracellular vesicle isolation and subsequent quantification by ultracentrifugation. The results reported here also show a five-fold increase in amount of critical liposarcoma-relevant extracellular vesicle cargo obtained in 30 min presenting a significant advance over existing state-of-art.Natural extracellular vesicles (EVs) are ideal drug carriers due to their remarkable biocompatibility. Their delivery specificity can be achieved by the conjugation of targeting ligands. However, existing methods to engineer target-specific EVs are tedious or inefficient, having to compromise between harsh chemical treatments and transient interactions. Here, we describe a novel method for the covalent conjugation of EVs with high copy numbers of targeting moieties using protein ligases. Conjugation of EVs with either an epidermal growth factor receptor (EGFR)-targeting peptide or anti-EGFR nanobody facilitates their accumulation in EGFR-positive cancer cells, both in vitro and in vivo. Systemic delivery of paclitaxel by EGFR-targeting EVs at a low dose significantly increases drug efficacy in a xenografted mouse model of EGFR-positive lung cancer. The method is also applicable to the conjugation of EVs with peptides and nanobodies targeting other receptors, such as HER2 and SIRP alpha, and the conjugated EVs can deliver RNA in addition to small molecules, supporting the versatile application of EVs in cancer therapies. This simple, yet efficient and versatile method for the stable surface modification of EVs bypasses the need for genetic and chemical modifications, thus facilitating safe and specific delivery of therapeutic payloads to target cells.Individuals with disabilities and/or mental health concerns were historically removed from society and placed in institutions and asylums. https://www.selleckchem.com/products/pu-h71.html Advocacy groups, drawing on civil rights movements, protested and lobbied for deinstitutionalization and increased inclusion of disabled individuals in schools and communities (Chapman et al., 2014). Although disabled individuals have more rights and access than ever before, they are still segregated in schools, encounter the judicial system more often, and are murdered by police (Reingle Gonzalez et al. in Journal of Disability Policy Studies 27106-115, 2016). We examine the history and ongoing incarceration of individuals with differences in the United States by analyzing contextual variables, as well as systemic inequities, including the school-to-prison pipeline, access to services, and prison infrastructure. We offer resources and actionable ways for behavior analysts to begin antiracist and anti-disableist work, apply principles of behavior analysis to address personal and systemic racism, and engage in advocacy toward a more just and equitable future for all.The COVID-19 pandemic has swept the world and required the mobilization of scientists and clinicians around the world to combat this serious disease. Along with SARS-CoV-2 virology research, understanding of the fundamental physiological processes, molecular and cellular mechanisms and intracellular signaling pathways underlying the clinical manifestations of COVID-19 is important for effective therapy of this disease. The review describes in detail the interaction of the components of the renin-angiotensin system (RAS) and receptors of end-glycosylated products (RAGE), which plays a special role in normal lung physiology and in pathological conditions in COVID-19, including the development of acute respiratory distress syndrome and "cytokine storm". A separate section is devoted to the latest developments aimed at correcting the dysfunction of the RAS caused by the binding of the virus to angiotensin converting enzyme 2 (ACE2)- the central element of this system. Analysis of published theoretical, clinical, and experimental data indicates the need for a complex treatment to prevent a severe course of COVID-19 using MasR agonists, blockers of the AT1R and NF-κB signaling pathway, as well as compounds with neuroprotective and neuroregenerative effects.The singular set of a viscosity solution to a Hamilton-Jacobi equation is known to propagate, from any noncritical singular point, along singular characteristics which are curves satisfying certain differential inclusions. In the literature, different notions of singular characteristics were introduced. However, a general uniqueness criterion for singular characteristics, not restricted to mechanical systems or problems in one space dimension, is missing at the moment. In this paper, we prove that, for a Tonelli Hamiltonian on R 2 , two different notions of singular characteristics coincide up to a bi-Lipschitz reparameterization. As a significant consequence, we obtain a uniqueness result for the class of singular characteristics that was introduced by Khanin and Sobolevski in the paper [On dynamics of Lagrangian trajectories for Hamilton-Jacobi equations. Arch. Ration. Mech. Anal., 219(2)861-885, 2016]. Investigating molecular biomarkers that accurately predict prognosis is of considerable clinical significance. Accumulating evidence suggests that long non-coding ribonucleic acids (lncRNAs) are frequently aberrantly expressed in colorectal cancer (CRC). To elucidate the prognostic function of multiple lncRNAs serving as biomarkers in CRC. We performed lncRNA expression profiling using the lncRNA mining approach in large CRC cohorts from The Cancer Genome Atlas (TCGA) database. Receiver operating characteristic analysis was performed to identify the optimal cutoff point at which patients could be classified into the high-risk or low-risk groups. Based on the Cox coefficient of the individual lncRNAs, we identified a nine-lncRNA signature that was associated with the survival of CRC patients in the training set ( = 175). The prognostic value of this nine-lncRNA signature was validated in the testing set ( = 174) and TCGA set ( = 349). The prognostic models, consisting of these nine CRC-specific lncRNAs, performed well for risk stratification in the testing set and TCGA set.